

Daisy4NFV

	OPNFV Daisy4nfv Installation Guide
	1. Abstract

	2. Version history

	3. Daisy4nfv configuration

	4. Installation Guide (Bare Metal Deployment)

	5. Installation Guide (Virtual Deployment)

	6. Deployment Error Recovery Guide

	7. OpenStack Minor Version Update Guide

	8. Build Your Own Kolla Image For Daisy

	9. Deployment Test Guide

	Release notes for Daisy4nfv
	1. Abstract

	2. OpenStack Configuration Guide

	Release notes for Daisy4nfv
	1. Abstract

	Design Docs for Daisy4nfv
	1. CI Job Introduction

	2. Deployment Steps

	3. Kolla Image Multicast Design

OPNFV Daisy4nfv Installation Guide

	1. Abstract

	2. Version history

	3. Daisy4nfv configuration
	3.1. Prerequisites
	3.1.1. Retrieve the installation iso image

	3.1.2. Retrieve the deployment scripts

	3.2. Setup Requirements
	3.2.1. Jumphost Requirements

	3.3. Bare Metal Node Requirements

	3.4. Network Requirements

	3.5. Execution Requirements (Bare Metal Only)

	4. Installation Guide (Bare Metal Deployment)
	4.1. Nodes Configuration (Bare Metal Deployment)

	4.2. Network Configuration (Bare Metal Deployment)

	4.3. Start Deployment (Bare Metal Deployment)

	5. Installation Guide (Virtual Deployment)
	5.1. Nodes Configuration (Virtual Deployment)

	5.2. Network Configuration (Virtual Deployment)

	5.3. Start Deployment (Virtual Deployment)

	6. Deployment Error Recovery Guide
	6.1. 1. Recovery Level 0

	6.2. 2. Recovery Level 1

	6.3. 3. Recovery Level 2

	6.4. 4. Recovery Level 3

	7. OpenStack Minor Version Update Guide

	8. Build Your Own Kolla Image For Daisy

	9. Deployment Test Guide

1. Abstract

This document describes how to install the Fraser release of OPNFV when using
Daisy4nfv as a deployment tool covering it’s limitations, dependencies and
required resources.

2. Version history

	Date

	Ver.

	Author

	Comment

	2017-02-07

	0.0.1

	Zhijiang Hu
(ZTE)

	Initial version

3. Daisy4nfv configuration

This document provides guidelines on how to install and configure the Fraser
release of OPNFV when using Daisy as a deployment tool including required
software and hardware configurations.

Installation and configuration of host OS, OpenStack etc. can be supported by
Daisy on Virtual nodes and Bare Metal nodes.

The audience of this document is assumed to have good knowledge in
networking and Unix/Linux administration.

3.1. Prerequisites

Before starting the installation of the Fraser release of OPNFV, some plannings
must be done.

3.1.1. Retrieve the installation iso image

First of all, the installation iso which includes packages of Daisy, OS,
OpenStack, and so on is needed for deploying your OPNFV environment.

The stable release iso image can be retrieved via OPNFV software download page [https://www.opnfv.org/software]

The daily build iso image can be retrieved via OPNFV artifact repository:

http://artifacts.opnfv.org/daisy.html

NOTE: Search the keyword “daisy/Fraser” to locate the iso image.

E.g.
daisy/opnfv-2017-10-06_09-50-23.iso

Download the iso file, then mount it to a specified directory and get the
opnfv-*.bin from that directory.

The git url and sha512 checksum of iso image are recorded in properties files.
According to these, the corresponding deployment scripts can be retrieved.

3.1.2. Retrieve the deployment scripts

To retrieve the repository of Daisy on Jumphost use the following command:

	git clone https://gerrit.opnfv.org/gerrit/daisy

To get stable Fraser release, you can use the following command:

	git checkout opnfv.6.0

3.2. Setup Requirements

If you have only 1 Bare Metal server, Virtual deployment is recommended. if you have more
than 3 servers, the Bare Metal deployment is recommended. The minimum number of
servers for each role in Bare metal deployment is listed below.

	Role

	Number of Servers

	Jump Host

	1

	Controller

	1

	Compute

	1

3.2.1. Jumphost Requirements

The Jumphost requirements are outlined below:

	CentOS 7.2 (Pre-installed).

	Root access.

	Libvirt virtualization support(For virtual deployment).

	Minimum 1 NIC(or 2 NICs for virtual deployment).

	PXE installation Network (Receiving PXE request from nodes and providing OS provisioning)

	IPMI Network (Nodes power control and set boot PXE first via IPMI interface)

	Internet access (For getting latest OS updates)

	External Interface(For virtual deployment, exclusively used by instance traffic to access the rest of the Internet)

	16 GB of RAM for a Bare Metal deployment, 64 GB of RAM for a Virtual deployment.

	CPU cores: 32, Memory: 64 GB, Hard Disk: 500 GB, (Virtual deployment needs 1 TB Hard Disk)

3.3. Bare Metal Node Requirements

Bare Metal nodes require:

	IPMI enabled on OOB interface for power control.

	BIOS boot priority should be PXE first then local hard disk.

	Minimum 1 NIC for Compute nodes, 2 NICs for Controller nodes.

	PXE installation Network (Broadcasting PXE request)

	IPMI Network (Receiving IPMI command from Jumphost)

	Internet access (For getting latest OS updates)

	External Interface(For virtual deployment, exclusively used by instance traffic to access the rest of the Internet)

3.4. Network Requirements

Network requirements include:

	No DHCP or TFTP server running on networks used by OPNFV.

	2-7 separate networks with connectivity between Jumphost and nodes.

	PXE installation Network

	IPMI Network

	Internet access Network

	OpenStack Public API Network

	OpenStack Private API Network

	OpenStack External Network

	OpenStack Tenant Network(currently, VxLAN only)

	Lights out OOB network access from Jumphost with IPMI node enabled (Bare Metal deployment only).

	Internet access Network has Internet access, meaning a gateway and DNS availability.

	OpenStack External Network has Internet access too if you want instances to access the Internet.

Note: All networks except OpenStack External Network can share one NIC(Default configuration) or use an exclusive
NIC(Reconfigurated in network.yml).

3.5. Execution Requirements (Bare Metal Only)

In order to execute a deployment, one must gather the following information:

	IPMI IP addresses of the nodes.

	IPMI login information for the nodes (user/password).

4. Installation Guide (Bare Metal Deployment)

4.1. Nodes Configuration (Bare Metal Deployment)

The below file is the inventory template of deployment nodes:

“./deploy/config/bm_environment/zte-baremetal1/deploy.yml”

You can write your own name/roles reference into it.

	name – Host name for deployment node after installation.

	roles – Components deployed. CONTROLLER_LB is for Controller,

COMPUTER is for Compute role. Currently only these two roles are supported.
The first CONTROLLER_LB is also used for ODL controller. 3 hosts in
inventory will be chosen to setup the Ceph storage cluster.

Set TYPE and FLAVOR

E.g.

TYPE: virtual
FLAVOR: cluster

Assignment of different roles to servers

E.g. OpenStack only deployment roles setting

hosts:
 - name: host1
 roles:
 - CONTROLLER_LB
 - name: host2
 roles:
 - COMPUTER
 - name: host3
 roles:
 - COMPUTER

NOTE:
For B/M, Daisy uses MAC address defined in deploy.yml to map discovered nodes to node items definition in deploy.yml, then assign role described by node item to the discovered nodes by name pattern. Currently, controller01, controller02, and controller03 will be assigned with Controler role while computer01, ‘computer02, computer03, and computer04 will be assigned with Compute role.

NOTE:
For V/M, There is no MAC address defined in deploy.yml for each virtual machine. Instead, Daisy will fill that blank by getting MAC from “virsh dump-xml”.

4.2. Network Configuration (Bare Metal Deployment)

Before deployment, there are some network configurations to be checked based
on your network topology. The default network configuration file for Daisy is
“./deploy/config/bm_environment/zte-baremetal1/network.yml”.
You can write your own reference into it.

The following figure shows the default network configuration.

+-B/M--------+------------------------------+
|Jumperserver+ |
+------------+ +--+ |
+-V/M--------+		
	Daisyserver+------+	
+------------+		
+------------------------------------| |---+
 | |
 | |
 +--+ | |
 | | +-B/M--------+ | |
 | +-------+ Controller +------+ |
 | | | ODL(Opt.) | | |
 | | | Network | | |
 | | | CephOSD1 | | |
 | | +------------+ | |
 | | | |
 | | | |
 | | | |
 | | +-B/M--------+ | |
 | +-------+ Compute1 +------+ |
 | | | CephOSD2 | | |
 | | +------------+ | |
 | | | |
 | | | |
 | | | |
 | | +-B/M--------+ | |
 | +-------+ Compute2 +------+ |
 | | | CephOSD3 | | |
 | | +------------+ | |
 | | | |
 | | | |
 | | | |
 +--+ +--+
 ^ ^
 | |
 | |
 /---------------------------\ |
 | External Network | |
 \---------------------------/ |
 /-----------------------+---\
 | Installation Network |
 | Public/Private API |
 | Internet Access |
 | Tenant Network |
 | Storage Network |
 | HeartBeat Network |
 \---------------------------/

Note:
For Flat External networks(which is used by default), a physical interface is needed on each compute node for ODL NetVirt recent versions.
HeartBeat network is selected,and if it is configured in network.yml,the keepalived interface will be the heartbeat interface.

4.3. Start Deployment (Bare Metal Deployment)

	Git clone the latest daisy4nfv code from opnfv: “git clone https://gerrit.opnfv.org/gerrit/daisy”

(2) Download latest bin file(such as opnfv-2017-06-06_23-00-04.bin) of daisy from
http://artifacts.opnfv.org/daisy.html and change the bin file name(such as opnfv-2017-06-06_23-00-04.bin)
to opnfv.bin. Check the https://build.opnfv.org/ci/job/daisy-os-odl-nofeature-ha-baremetal-daily-master/,
and if the ‘snaps_health_check’ of functest result is ‘PASS’,
you can use this verify-passed bin to deploy the openstack in your own environment

(3) Assumed cloned dir is $workdir, which laid out like below:
[root@daisyserver daisy]# ls
ci deploy docker INFO LICENSE requirements.txt templates tests tox.ini
code deploy.log docs known_hosts setup.py test-requirements.txt tools
Make sure the opnfv.bin file is in $workdir

(4) Enter into the $workdir, which laid out like below:
[root@daisyserver daisy]# ls
ci code deploy docker docs INFO LICENSE requirements.txt setup.py templates test-requirements.txt tests tools tox.ini
Create folder of labs/zte/pod2/daisy/config in $workdir

(5) Move the ./deploy/config/bm_environment/zte-baremetal1/deploy.yml and
./deploy/config/bm_environment/zte-baremetal1/network.yml
to labs/zte/pod2/daisy/config dir.

Note:
If selinux is disabled on the host, please delete all xml files section of below lines in dir templates/physical_environment/vms/

	<seclabel type=’dynamic’ model=’selinux’ relabel=’yes’>

	<label>system_u:system_r:svirt_t:s0:c182,c195</label>
<imagelabel>system_u:object_r:svirt_image_t:s0:c182,c195</imagelabel>

</seclabel>

(6) Config the bridge in jumperserver,make sure the daisy vm can connect to the targetnode,use the command below:
brctl addbr br7
brctl addif br7 enp3s0f3(the interface for jumperserver to connect to daisy vm)
ifconfig br7 10.20.7.1 netmask 255.255.255.0 up
service network restart

(7) Run the script deploy.sh in daisy/ci/deploy/ with command:
sudo ./ci/deploy/deploy.sh -L $(cd ./;pwd) -l zte -p pod2 -s os-nosdn-nofeature-noha

Note:
The value after -L should be a absolute path which points to the directory which contents labs/zte/pod2/daisy/config directory.
The value after -p parameter(pod2) comes from path “labs/zte/pod2”
The value after -l parameter(zte) comes from path “labs/zte”
The value after -s “os-nosdn-nofeature-ha” used for deploying multinode openstack
The value after -s “os-nosdn-nofeature-noha” used for deploying all-in-one openstack

(8) When deployed successfully,the floating ip of openstack is 10.20.7.11,
the login account is “admin” and the password is “keystone”

5. Installation Guide (Virtual Deployment)

5.1. Nodes Configuration (Virtual Deployment)

The below file is the inventory template of deployment nodes:

“./deploy/conf/vm_environment/zte-virtual1/deploy.yml”

You can write your own name/roles reference into it.

	name – Host name for deployment node after installation.

	roles – Components deployed.

Set TYPE and FLAVOR

E.g.

TYPE: virtual
FLAVOR: cluster

Assignment of different roles to servers

E.g. OpenStack only deployment roles setting

hosts:
 - name: host1
 roles:
 - CONTROLLER_LB

 - name: host2
 roles:
 - COMPUTER

NOTE:
For B/M, Daisy uses MAC address defined in deploy.yml to map discovered nodes to node items definition in deploy.yml,
then assign role described by node item to the discovered nodes by name pattern.
Currently, controller01, controller02, and controller03 will be assigned with Controller role
while computer01, computer02, computer03, and computer04 will be assigned with Compute role.

NOTE:
For V/M, There is no MAC address defined in deploy.yml for each virtual machine. Instead, Daisy will fill that blank by getting MAC from “virsh dump-xml”.

E.g. OpenStack and ceph deployment roles setting

hosts:
 - name: host1
 roles:
 - controller

 - name: host2
 roles:
 - compute

5.2. Network Configuration (Virtual Deployment)

Before deployment, there are some network configurations to be checked based
on your network topology. The default network configuration file for Daisy is
“daisy/deploy/config/vm_environment/zte-virtual1/network.yml”.
You can write your own reference into it.

The following figure shows the default network configuration.

+-B/M--------+------------------------------+
|Jumperserver+ |
+------------+ +--+ |
+-V/M--------+						
	Daisyserver+------+					
+------------+						
+--+						
		+-V/M--------+				
	+-------+ Controller +------+					
			ODL(Opt.)			
			Network			
			Ceph1			
		+------------+				
		+-V/M--------+				
	+-------+ Compute1 +------+					
			Ceph2			
		+------------+				
		+-V/M--------+				
	+-------+ Compute2 +------+					
			Ceph3			
		+------------+				
+--+ +--+						
^ ^						
/---------------------------\						
	External Network					
\---------------------------/						
/-----------------------+---\						
	Installation Network					
	Public/Private API					
	Internet Access					
	Tenant Network					
	Storage Network					
	HeartBeat Network					
\---------------------------/						
+---+

Note:
For Flat External networks(which is used by default), a physical interface is needed on each compute node for ODL NetVirt recent versions.
HeartBeat network is selected,and if it is configured in network.yml,the keepalived interface will be the heartbeat interface.

5.3. Start Deployment (Virtual Deployment)

(1) Git clone the latest daisy4nfv code from opnfv: “git clone https://gerrit.opnfv.org/gerrit/daisy”,
make sure the current branch is master

(2) Download latest bin file(such as opnfv-2017-06-06_23-00-04.bin) of daisy from
http://artifacts.opnfv.org/daisy.html and change the bin file name(such as opnfv-2017-06-06_23-00-04.bin)
to opnfv.bin. Check the https://build.opnfv.org/ci/job/daisy-os-odl-nofeature-ha-baremetal-daily-master/,
and if the ‘snaps_health_check’ of functest result is ‘PASS’,
you can use this verify-passed bin to deploy the openstack in your own environment

(3) Assumed cloned dir is $workdir, which laid out like below:
[root@daisyserver daisy]# ls
ci code deploy docker docs INFO LICENSE requirements.txt setup.py templates test-requirements.txt tests tools tox.ini
Make sure the opnfv.bin file is in $workdir

	Enter into $workdir, Create folder of labs/zte/virtual1/daisy/config in $workdir

(5) Move the deploy/config/vm_environment/zte-virtual1/deploy.yml and
deploy/config/vm_environment/zte-virtual1/network.yml to
labs/zte/virtual1/daisy/config dir.

Note:
zte-virtual1 config files deploy openstack with five nodes(3 lb nodes and 2 computer nodes),
if you want to deploy an all-in-one openstack, change the zte-virtual1 to zte-virtual2

Note:
If selinux is disabled on the host, please delete all xml files section of below lines in dir templates/virtual_environment/vms/

	<seclabel type=’dynamic’ model=’selinux’ relabel=’yes’>

	<label>system_u:system_r:svirt_t:s0:c182,c195</label>
<imagelabel>system_u:object_r:svirt_image_t:s0:c182,c195</imagelabel>

</seclabel>

(6) Run the script deploy.sh in daisy/ci/deploy/ with command:
sudo ./ci/deploy/deploy.sh -L $(cd ./;pwd) -l zte -p virtual1 -s os-nosdn-nofeature-ha

Note:
The value after -L should be an absolute path which points to the directory which includes labs/zte/virtual1/daisy/config directory.
The value after -p parameter(virtual1) is got from labs/zte/virtual1/daisy/config/
The value after -l parameter(zte) is got from labs/
The value after -s “os-nosdn-nofeature-ha” used for deploying multinode openstack
The value after -s “os-nosdn-nofeature-noha” used for deploying all-in-one openstack

(7) When deployed successfully,the floating ip of openstack is 10.20.11.11,
the login account is “admin” and the password is “keystone”

6. Deployment Error Recovery Guide

Deployment may fail due to different kinds of reasons, such as Daisy VM creation
error, target nodes failure during OS installation, or Kolla deploy command
error. Different errors can be grouped into several error levels. We define
Recovery Levels below to fulfill recover requirements in different error levels.

6.1. 1. Recovery Level 0

This level restart whole deployment again. Mainly to retry to solve errors such
as Daisy VM creation failed. For example we use the following command to do
virtual deployment(in the jump host):

sudo ./ci/deploy/deploy.sh -b ./ -l zte -p virtual1 -s os-nosdn-nofeature-ha

If command failed because of Daisy VM creation error, then redoing above command
will restart whole deployment which includes rebuilding the daisy VM image and
restarting Daisy VM.

6.2. 2. Recovery Level 1

If Daisy VM was created successfully, but bugs were encountered in Daisy code
or software of target OS which prevent deployment from being done, in this case,
the user or the developer does not want to recreate the Daisy VM again during
next deployment process but just to modify some pieces of code in it. To achieve
this, he/she can redo deployment by deleting all clusters and hosts first(in the
Daisy VM):

source /root/daisyrc_admin
for i in `daisy cluster-list | awk -F "|" '{print $2}' | sed -n '4p' | tr -d " "`;do daisy cluster-delete $i;done
for i in `daisy host-list | awk -F "|" '{print $2}'| grep -o "[^]\+\(\+[^]\+\)*"|tail -n +2`;do daisy host-delete $i;done

Then, adjust deployment command as below and run it again(in the jump host):

sudo ./ci/deploy/deploy.sh -S -b ./ -l zte -p virtual1 -s os-nosdn-nofeature-ha

Pay attention to the “-S” argument above, it lets the deployment process to
skip re-creating Daisy VM and use the existing one.

6.3. 3. Recovery Level 2

If both Daisy VM and target node’s OS are OK, but error ocurred when doing
OpenStack deployment, then there is even no need to re-install target OS for
the deployment retrying. In this level, all we need to do is just retry the
Daisy deployment command as follows(in the Daisy VM):

source /root/daisyrc_admin
daisy uninstall <cluster-id>
daisy install <cluster-id>

This basically does kolla-ansible destruction and kolla-asnible deployment.

6.4. 4. Recovery Level 3

If previous deployment was failed during kolla-ansible deploy(you can confirm
it by checking /var/log/daisy/api.log) or if previous deployment was successful
but the default configration is not what you want and it is OK for you to destroy
the OPNFV software stack and re-deploy it again, then you can try recovery level 3.

For example, in order to use external iSCSI storage, you are about to deploy
iSCSI cinder backend which is not enabled by default. First, cleanup the
previous deployment.

ssh into daisy node, then do:

[root@daisy daisy]# source /etc/kolla/admin-openrc.sh
[root@daisy daisy]# openstack server delete <all vms you created>

Note: /etc/kolla/admin-openrc.sh may not have existed if previous
deployment was failed during kolla deploy.

[root@daisy daisy]# cd /home/kolla_install/kolla-ansible/
[root@daisy kolla-ansible]# ./tools/kolla-ansible destroy \
-i ./ansible/inventory/multinode --yes-i-really-really-mean-it

Then, edit /etc/kolla/globals.yml and append the follwoing line:

enable_cinder_backend_iscsi: "yes"
enable_cinder_backend_lvm: "no"

Then, re-deploy again:

[root@daisy kolla-ansible]# ./tools/kolla-ansible prechecks -i ./ansible/inventory/multinode
[root@daisy kolla-ansible]# ./tools/kolla-ansible deploy -i ./ansible/inventory/multinode

After successfully deploying, issue the following command to generate
/etc/kolla/admin-openrc.sh file.

[root@daisy kolla-ansible]# ./tools/kolla-ansible post-deploy -i ./ansible/inventory/multinode

Finally, issue the following command to create necessary resources, and your
environment are ready for running OPNFV functest.

[root@daisy kolla-ansible]# cd /home/daisy
[root@daisy daisy]# ./deploy/post.sh -n /home/daisy/labs/zte/virtual1/daisy/config/network.yml

Note: “zte/virtual1” in above path may vary in your environment.

7. OpenStack Minor Version Update Guide

Thanks to Kolla’s kolla-ansible upgrade function, Daisy can
update OpenStack minor version as the follows:

1. Get new version file only from Daisy team.
Since Daisy’s Kolla images are built by meeting the OPNFV requirements
and have their own file packaging layout, Daisy requires user to
always use Kolla image file built by Daisy team. Currently, it can be
found at http://artifacts.opnfv.org/daisy/upstream, or please
see this chapter
for how to build your own image.

2. Put new version file into /var/lib/daisy/versionfile/kolla/, for
example:
/var/lib/daisy/versionfile/kolla/kolla-image-ocata-170811155446.tgz

3. Add version file to Daisy’s version management database then get the
version ID.

[root@daisy ~]# source /root/daisyrc_admin
[root@daisy ~]# daisy version-add kolla-image-ocata-170811155446.tgz kolla
+-------------+--------------------------------------+
| Property | Value |
+-------------+--------------------------------------+
checksum	None
created_at	2017-08-28T06:45:25.000000
description	None
id	8be92587-34d7-43e8-9862-a5288c651079
name	kolla-image-ocata-170811155446.tgz
owner	None
size	0
status	unused
target_id	None
type	kolla
updated_at	2017-08-28T06:45:25.000000
version	None
+-------------+--------------------------------------+

	Get cluster ID

[root@daisy ~]# daisy cluster-list
+--------------------------------------+-------------+...
| ID | Name |...
+--------------------------------------+-------------+...
| d4c1e0d3-c4b8-4745-aab0-0510e62f0ebb | clustertest |...
+--------------------------------------+-------------+...

	Issue update command passing cluster ID and version ID

[root@daisy ~]# daisy update d4c1e0d3-c4b8-4745-aab0-0510e62f0ebb --update-object kolla --version-id 8be92587-34d7-43e8-9862-a5288c651079
+----------+--------------+
| Property | Value |
+----------+--------------+
| status | begin update |
+----------+--------------+

6. Since step 5’s command is non-blocking, the user need to run the
following command to get updating progress.

[root@daisy ~]# daisy host-list --cluster-id d4c1e0d3-c4b8-4745-aab0-0510e62f0ebb
...+---------------+-------------+-------------------------+
...| Role_progress | Role_status | Role_messages |
...+---------------+-------------+-------------------------+
...| 0 | updating | prechecking envirnoment |
...+---------------+-------------+-------------------------+

Notes. The above command returns many fields. User only have to take care
about the Role_xxx fields in this case.

8. Build Your Own Kolla Image For Daisy

The following command will build Ocata Kolla image for Daisy based on
Daisy’s fork of openstack/kolla project. This is also the method Daisy
used for the Euphrates release.

The reason why here use fork of openstack/kolla project is to backport
ODL support from pike branch to ocata branch.

cd ./ci
./kolla-build.sh

After building, the above command will put Kolla image into
/tmp/kolla-build-output directory and the image version will be 4.0.2.

If you want to build an image which can update 4.0.2, run the following
command:

cd ./ci
./kolla-build.sh -e 1

This time the image version will be 4.0.2.1 which is higher than 4.0.2
so that it can be used to replace the old version.

9. Deployment Test Guide

After successful deployment of openstack, daisy4nfv use Functest to test the api of openstack.
You can follow below instruction to test the successfully deployed openstack on jumperserver.

1.docker pull opnfv/functest
run ‘docker images’ command to make sure have the latest functest images.

2.docker run -ti –name functest -e INSTALLER_TYPE=”daisy”-e INSTALLER_IP=”10.20.11.2” -e NODE_NAME=”zte-vtest” -e DEPLOY_SCENARIO=”os-nosdn-nofeature-ha” -e BUILD_TAG=”jenkins-functest-daisy-virtual-daily-master-1259” -e DEPLOY_TYPE=”virt” opnfv/functest:latest /bin/bash
Before run above command change below parameters:
DEPLOY_SCENARIO: indicate the scenario
DEPLOY_TYPE: virt/baremetal
NODE_NAME: pod name
INSTALLER_IP: daisy vm node ip

3.Log in the daisy vm node to get the /etc/kolla/admin-openrc.sh file, and write them in /home/opnfv/functest/conf/openstack.creds file of functest container.

4.Run command ‘functest env prepare’ to prepare the functest env.

5.Run command ‘functest testcase list’ to list all the testcase can be run.

6.Run command ‘functest testcase run testcase_name’ to run the testcase_name testcase of functest.

Release notes for Daisy4nfv

	1. Abstract
	1.1. Configuration Guide

	2. OpenStack Configuration Guide
	2.1. Before The First Deployment

	2.2. After The First Deployment

1. Abstract

This document compiles the release notes for the Fraser release of
OPNFV when using Daisy as a deployment tool.

1.1. Configuration Guide

Before installing Daisy4NFV on jump server,you have to configure the
daisy.conf file.Then put the right configured daisy.conf file in the
/home/daisy_install/ dir.

	you have to supplement the “daisy_management_ip” field with the ip of
management ip of your Daisy server vm.

	Now the backend field “default_backend_types” just support the “kolla”.

	“os_install_type” field just support “pxe” for now.

	Daisy now use pxe server to install the os, the “build_pxe” item must set to “no”.

	“eth_name” field is the pxe server interface, and this field is required when
the “build_pxe” field set to “yes”.This should be set to the interface
(in Daisy Server VM) which will be used for communicating with other target nodes
on management/PXE net plane. Default is ens3.

	“ip_address” field is the ip address of pxe server interface.

	“net_mask” field is the netmask of pxe server,which is required when the “build_pxe”
is set to “yes”

	“client_ip_begin” and “client_ip_end” field are the dhcp range of the pxe server.

	If you want to use the multicast type to deliver the kolla image to target node,
set the “daisy_conf_mcast_enabled” field to “True”

2. OpenStack Configuration Guide

2.1. Before The First Deployment

When executing deploy.sh, before doing real deployment, Daisy utilizes
Kolla’s service configuration functionality [1] to specify the following
changes to the default OpenStack configuration which comes from Kolla as
default.

a) If is it is a VM deployment, set virt_type=qemu amd cpu_mode=none for
nova-compute.conf.

b) In nova-api.conf set default_floating_pool to the name of the external
network which will be created by Daisy after deployment for nova-api.conf.

c) In heat-api.conf and heat-engine.conf, set deferred_auth_method to
trusts and unset trusts_delegated_roles.

Those above changes are requirements of OPNFV or environment’s
constraints. So it is not recommended to change them. But if the user
wants to add more specific configurations to OpenStack services before
doing real deployment, we suggest to do it in the same way as deploy.sh
do. Currently, this means hacking into deploy/prepare.sh or
deploy/prepare/execute.py then add config file as described in [1].

Notes:
Suggest to pass the first deployment first, then reconfigure and deploy
again.

2.2. After The First Deployment

After the first time of deployment of OpenStack, its configurations can
also be changed and applied by using Kolla’s service configuration
functionality [1]. But user has to issue Kolla’s command to do it in this
release:

[1] https://docs.openstack.org/kolla-ansible/latest/advanced-configuration.html#openstack-service-configuration-in-kolla

Release notes for Daisy4nfv

	1. Abstract
	1.1. Introduction

	1.2. Release Data

	1.3. Known Limitations, Issues and Workarounds

	1.4. Test Result

1. Abstract

This document covers features, limitations and required system resources for the
OPNFV Fraser release when using Daisy4nfv as a deployment tool.

1.1. Introduction

Daisy4nfv is an OPNFV installer project based on open source project Daisycloud-core,
which provides containerized deployment and management of OpenStack and other distributed systems such as OpenDaylight.

1.2. Release Data

	Project

	Daisy4nfv

	Repo/tag

	daisy/opnfv-6.0

	Release designation

	opnfv-6.0

	Release date

	

	Purpose of the delivery

	OPNFV Fraser release

1.2.1. Deliverables

1.2.1.1. Software deliverables

	Daisy4NFV/opnfv-6.0 ISO, please get it from OPNFV software download page [https://www.opnfv.org/software/]

1.2.1.2. Documentation deliverables

	OPNFV(Fraser) Daisy4nfv installation instructions

	OPNFV(Fraser) Daisy4nfv Release Notes

1.2.2. Version change

1.2.2.1. Module version change

This is the Fraser release of Daisy4nfv as a deployment toolchain in OPNFV, the following
upstream components supported with this release.

	Centos 7.4

	Openstack (Pike release)

	Opendaylight (Carbon SR3)

1.2.3. Reason for new version

1.2.3.1. Feature additions

	JIRA REFERENCE

	SLOGAN

	
	Support OpenDayLight Carbon SR3

	
	Support OpenStack Pike

	
	Support OVS+DPDK

1.2.3.2. Bug corrections

JIRA TICKETS:

	JIRA REFERENCE

	SLOGAN

	
	

1.3. Known Limitations, Issues and Workarounds

1.3.1. System Limitations

Max number of blades: 1 Jumphost, 3 Controllers, 20 Compute blades

Min number of blades: 1 Jumphost, 1 Controller, 1 Compute blade

Storage: Ceph is the only supported storage configuration

Min Jumphost requirements: At least 16GB of RAM, 16 core CPU

1.3.2. Known issues

	Scenario

	Issue

	Workarounds

	
	
	

	
	
	

1.4. Test Result

TODO

Design Docs for Daisy4nfv

	1. CI Job Introduction
	1.1. CI Base Architech

	1.2. Project Gating And Daily Deployment Test

	1.3. Production CI

	2. Deployment Steps

	3. Kolla Image Multicast Design
	3.1. Protocol Design

	3.2. How to sync between server threads

	3.3. Client flow chart

	3.4. UDP thread flow chart

	3.5. TCP thread flow chart

	3.6. TCP using poll and message queue

1. CI Job Introduction

1.1. CI Base Architech

https://wiki.opnfv.org/display/INF/CI+Evolution

1.2. Project Gating And Daily Deployment Test

To save time, currently, Daisy4NFV does not run deployment test in gate job which simply builds and
uploads artifacts to low confidence level repo. The project deployment test is triggered on a daily
basis. If the artifact passes the test, then it will be promoted to the high confidence level repo.

The low confidence level artifacts are bin files in http://artifacts.opnfv.org/daisy.html named like
“daisy/opnfv-Gerrit-39495.bin”, while the high confidence level artifacts are named like
“daisy/opnfv-2017-08-20_08-00-04.bin”.

The daily project deployment status can be found at

https://build.opnfv.org/ci/job/daisy-daily-master/

1.3. Production CI

The status of Daisy4NFV’s CI/CD which running on OPNFV production CI environments(both B/M and VM)
can be found at

https://build.opnfv.org/ci/job/daisy-os-nosdn-nofeature-ha-baremetal-daily-master/
https://build.opnfv.org/ci/job/daisy-os-odl-nofeature-ha-baremetal-daily-master/
https://build.opnfv.org/ci/job/daisy-os-nosdn-nofeature-ha-virtual-daily-master/
https://build.opnfv.org/ci/job/daisy-os-odl-nofeature-ha-virtual-daily-master/

Dashboard for taking a glance on CI health status in a more intuitive way can be found at

http://testresults.opnfv.org/reporting/functest/release/master/index-status-daisy.html

2. Deployment Steps

This document takes VM all-in-one environment as example to show what ci/deploy/deploy.sh
really do.

	On jump host, clean up all-in-one vm and networks.

	On jump host, clean up daisy vm and networks.

	On jump host, create and start daisy vm and networks.

	In daisy vm, Install daisy artifact.

	In daisy vm, config daisy and OpenStack default options.

6. In daisy vm, create cluster, update network and build PXE server for the bootstrap
kernel. In short, be ready for discovering target nodes. These tasks are done by running
the following command.

python /home/daisy/deploy/tempest.py –dha /home/daisy/labs/zte/virtual1/daisy/config/deploy.yml –network /home/daisy/labs/zte/virtual1/daisy/config/network.yml –cluster ‘yes’

	On jump host, create and start all-in-one vm and networks.

	On jump host, after all-in-one vm is up, get its mac address and write into /home/daisy/labs/zte/virtual1/daisy/config/deploy.yml.

9. In daisy vm, check if all-in-one vm was discovered, if it was, then update its network
assignment and config OpenStack according to OPNFV scenario and setup PXE for OS
installaion. These tasks are done by running the following command.

python /home/daisy/deploy/tempest.py –dha /home/daisy/labs/zte/virtual1/daisy/config/deploy.yml –network /home/daisy/labs/zte/virtual1/daisy/config/network.yml –host yes –isbare 0 –scenario os-nosdn-nofeature-noha

Note: Current host status:
os_status is “init”.

	On jump host, restart all_in_one vm to install OS.

11. In daisy vm, continue to intall OS by running the following command which for VM
environment only.

python /home/daisy/deploy/tempest.py –dha /home/daisy/labs/zte/virtual1/daisy/config/deploy.yml –network /home/daisy/labs/zte/virtual1/daisy/config/network.yml –install ‘yes’

12. In daisy vm, run the following command to check OS intallation progress.
/home/daisy/deploy/check_os_progress.sh -d 0 -n 1

Note: Current host status:
os_status is “installing” during installation, then os_status becomes “active” after OS
was succesfully installed.

	On jump host, reboot all-in-one vm again to get a fresh and first booted OS.

14. In daisy vm, run the following command to check OpenStack/ODL/… intallation
progress.

/home/daisy/deploy/check_openstack_progress.sh -n 1

3. Kolla Image Multicast Design

3.1. Protocol Design

	All Protocol headers are 1 byte long or align to 4 bytes.

2. Packet size should not exceed above 1500(MTU) bytes including UDP/IP header and should
be align to 4 bytes. In future, MTU can be modified larger than 1500(Jumbo Frame) through
cmd line option to enlarge the data throughput.

/* Packet header definition (align to 4 bytes) */
struct packet_ctl {

uint32_t seq; // packet seq number start from 0, unique in server life cycle.
uint32_t crc; // checksum
uint32_t data_size; // payload length
uint8_t data[0];

};

/* Buffer info definition (align to 4 bytes) */
struct buffer_ctl {

uint32_t buffer_id; // buffer seq number start from 0, unique in server life cycle.
uint32_t buffer_size; // payload total length of a buffer
uint32_t packet_id_base; // seq number of the first packet in this buffer.
uint32_t pkt_count; // number of packet in this buffer, 0 means EOF.

};

	1-byte-long header definition

Signals such as the four below are 1 byte long, to simplify the receive process(since it
cannot be spitted).

#define CLIENT_READY 0x1
#define CLIENT_REQ 0x2
#define CLIENT_DONE 0x4
#define SERVER_SENT 0x8

Note: Please see the collaboration diagram for their meanings.

	Retransmission Request Header

/* Retransmition Request Header (align to 4 bytes) */
struct request_ctl {

uint32_t req_count; // How many seqs below.
uint32_t seqs[0]; // packet seqs.

};

	Buffer operations

void buffer_init(); // Init the buffer_ctl structure and all(say 1024) packet_ctl
structures. Allocate buffer memory.
long buffer_fill(int fd); // fill a buffer from fd, such as stdin
long buffer_flush(int fd); // flush a buffer to fd, say stdout
struct packet_ctl *packet_put(struct packet_ctl *new_pkt);// put a packet to a buffer
and return a free memory slot for the next packet.
struct packet_ctl *packet_get(uint32_t seq);// get a packet data in buffer by
indicating the packet seq.

3.2. How to sync between server threads

If children’s aaa() operation need to wait the parents’s init() to be done, then do it
literally like this:

UDP Server
TCP Server1 = spawn()—-> TCP Server1

	init()

	TCP Server2 = spawn()—–> TCP Server2

	V(sem)———————-> P(sem) // No child any more

	V(sem)———————> P(sem)
aaa() // No need to V(sem), for no child

aaa()

If parent’s send() operation need to wait the children’s ready() done, then do it
literally too, but is a reverse way:

	UDP Server TCP Server1 TCP Server2

	

// No child any more

ready() ready()
P(sem) <——————— V(sem)

P(sem) <—————— V(sem)
send()

Note that the aaa() and ready() operations above run in parallel. If this is not the
case due to race condition, the sequence above can be modified into this below:

	UDP Server TCP Server1 TCP Server2

	

	// No child any more

	ready()

P(sem) <——————— V(sem)
ready()

P(sem) <——————- V(sem)
send()

In order to implement such chained/zipper sync pattern, a pair of semaphores is
needed between the parent and the child. One is used by child to wait parent , the
other is used by parent to wait child. semaphore pair can be allocated by parent
and pass the pointer to the child over spawn() operation such as pthread_create().

/* semaphore pair definition */
struct semaphores {

sem_t wait_parent;
sem_t wait_child;

};

Then the semaphore pair can be recorded by threads by using the semlink struct below:
struct semlink {

	struct semaphores this; / used by parent to point to the struct semaphores

	which it created during spawn child. */

	struct semaphores parent; / used by child to point to the struct

	semaphores which it created by parent */

};

chained/zipper sync API:

void sl_wait_child(struct semlink *sl);
void sl_release_child(struct semlink *sl);
void sl_wait_parent(struct semlink *sl);
void sl_release_parent(struct semlink *sl);

API usage is like this.

Thread1(root parent) Thread2(child) Thread3(grandchild)
sl_wait_parent(noop op)
sl_release_child

	+———->sl_wait_parent

	

	sl_release_child

	
	+———–> sl_wait_parent

	
sl_release_child(noop op)
…
sl_wait_child(noop op)

	sl_release_parent

sl_wait_child <————-

	sl_release_parent

sl_wait_child <————
sl_release_parent(noop op)

API implementation:

void sl_wait_child(struct semlink *sl)
{

	if (sl->this) {

	P(sl->this->wait_child);

}

}

void sl_release_child(struct semlink *sl)
{

	if (sl->this) {

	V(sl->this->wait_parent);

}

}

void sl_wait_parent(struct semlink *sl)
{

	if (sl->parent) {

	P(sl->parent->wait_parent);

}

}

void sl_release_parent(struct semlink *sl)
{

	if (sl->parent) {

	V(sl->parent->wait_child);

}

}

3.3. Client flow chart

See Collaboration Diagram

3.4. UDP thread flow chart

See Collaboration Diagram

3.5. TCP thread flow chart

	S_INIT — (UDP initialized) —> S_ACCEPT — (accept clients) –+

	

/—————————————————————-/
V

	S_PREP — (UDP prepared abuffer)

	^ |
| –> S_SYNC — (clients ClIENT_READY)
| |
| –> S_SEND — (clients CLIENT_DONE)
| |
| V
—————(bufferctl.pkt_count != 0)———————–+

V

exit() <— (bufferctl.pkt_count == 0)

3.6. TCP using poll and message queue

TCP uses poll() to sync with client’s events as well as output event from itself, so
that we can use non-block socket operations to reduce the latency. POLLIN means there
are message from client and POLLOUT means we are ready to send message/retransmission
packets to client.

poll main loop pseudo code:
void check_clients(struct server_status_data *sdata)
{

poll_events = poll(&(sdata->ds[1]), sdata->ccount - 1, timeout);

/* check all connected clients */
for (sdata->cindex = 1; sdata->cindex < sdata->ccount; sdata->cindex++) {

ds = &(sdata->ds[sdata->cindex]);
if (!ds->revents) {

continue;

}

	if (ds->revents & (POLLERR|POLLHUP|POLLNVAL)) {

	handle_error_event(sdata);

	} else if (ds->revents & (POLLIN|POLLPRI)) {

	
	handle_pullin_event(sdata); // may set POLLOUT into ds->events

	// to trigger handle_pullout_event().

	} else if (ds->revents & POLLOUT) {

	handle_pullout_event(sdata);

}

}

}

For TCP, since the message from client may not complete and send data may be also
interrupted due to non-block fashion, there should be one send message queue and a
receive message queue on the server side for each client (client do not use non-block
operations).

TCP message queue definition:

	struct tcpq {

	struct qmsg head, *tail;
long count; / message count in a queue /
long size; / Total data size of a queue */

};

TCP message queue item definition:

	struct qmsg {

	struct qmsg *next;
void *data;
long size;

};

TCP message queue API:

// Allocate and init a queue.
struct tcpq * tcpq_queue_init(void);

// Free a queue.
void tcpq_queue_free(struct tcpq *q);

// Return queue length.
long tcpq_queue_dsize(struct tcpq *q);

// queue new message to tail.
void tcpq_queue_tail(struct tcpq *q, void *data, long size);

// queue message that cannot be sent currently back to queue head.
void tcpq_queue_head(struct tcpq *q, void *data, long size);

// get one piece from queue head.
void * tcpq_dequeue_head(struct tcpq *q, long *size);

// Serialize all pieces of a queue, and move it out of queue, to ease the further
//operation on it.
void * tcpq_dqueue_flat(struct tcpq *q, long *size);

// Serialize all pieces of a queue, do not move it out of queue, to ease the further
//operation on it.
void * tcpq_queue_flat_peek(struct tcpq *q, long *size);

Index

Requirement

1. When deploying a large OPNFV/OpenStack cluster, we would like to take the advantage of UDP
multicast to prevent the network bottleneck when distributing Kolla container from one
Installer Server to all target hosts by using unicast.

2. When it comes to auto scaling (extension) of compute nodes, use unicast is acceptable, since
the number of nodes in this condition is usually small.

The basic step to introduce multicast to deployment is:
a. Still setup the monopolistic docker registry server on Daisy server as a failsafe.
b. Daisy server, as the multicast server, prepares the image file to be transmitted, and count
how many target hosts(as the multicast clients)that should receive the image file
simultaneously.
c. Multicast clients tell the multicast server about ready to receive the image.
d. Multicast server transmits image over UDP multicast channel.
e. Multicast clients report success after received the whole image.
f. Setup docker registry server on each target hosts based upon received docker image.
g. Setup Kolla ansible to use 127.0.0.1 as the registry server IP so that the real docker
container retrieving network activities only take place inside target hosts.

Design

Methods to achieve

TIPC

TIPC or its wrapper such as ZeroMQ is good at multicast, but it is not suitable as an
installer:
1. The default TIPC kernel module equipped by CentOS7(kernel verison 3.10) is NOT stable
especially in L3 multicast(although we can use L2 multicast, but the network will be limited to
L2). If errors happen, it is hard for us to recover a node from kernel panic.

2. TIPC’s design is based on a stable node cluster environment, esp in Lossless Ethernet. But
the real environment is generally not in that case. When multicast is broken, Installer should
switch to unicast, but TIPC currently do not have such capability.

Top level design

1. There are two kinds of thread on the server side, one is UDP multicast thread the other is
TCP sync/retransmit thread. There will be more than one TCP threads since one TCP thread can
only serve a limited client (say 64~128) in order to limit the CPU load and unicast retransmit
network usage.

	There is only one thread on client side.

3. All the packets that a client lost during UDP multicast will be request by client to the TCP
thread and resend by using TCP unicast, if unicast still cannot deliver the packets successfully,
the client will failback to using the monopolistic docker registry server on Daisy server as a
failsafe option.

	Each packet needs checksum.

UDP Server Design (runs on Daisy Server)

1. Multicast group IP and Port should be configurable, as well as the interface that will be
used as the egress of the multicast packets. The user will pass the interface’s IP as the
handle to find the egress.

	Image data to be sent is passed to server through stdin.

3. Consider the size of image is large (xGB), the server cannot pre-allocate whole buffer to
hold all image at once. Besides, since the data is from stdin and the actual length is
unpredictable. So the server should split the data into small size buffers and send to the
clients one by one. Furthermore, buffer shall be divided into packets which size is MTU
including the UDP/IP header. Then the buffer size can be , for example 1024 * MTU including the
UDP/IP header.

4. After sending one buffer to client the server should stop and get feedback from client to
see if all clients have got all packets in that buffer. If any clients lost any buffer, client
should request the server to resend packets from a more stable way(TCP).

5. when got the EOF from stdin, server should send a buffer which size is 0 as an EOF signal to
the client to let it know about the end of sending.

TCP Server Design (runs on Daisy Server)

1. All TCP server threads and the only one UDP thread share one process. The UDP thread is the
parent thread, and the first TCP thread is the child, while the second TCP thread is the
grandchild, and so on. Thus, for each TCP thread, there is only one parent and at most one
child.

2. TCP thread accepts the connect request from client. The number of client is predefined by
server cmdline parameter. Each TCP thread connect with at most ,say 64 clients, if there are
more clients to be connected to, then a child TCP thread is spawned by the parent.

3. Before UDP thread sending any buffer to client, all TCP threads should send UDP multicast
IP/Port information to their clients beforehand.

4. During each buffer sending cycle, TCP threads send a special protocol message to tell
clients about the size/id of the buffer and id of each packet in it. After getting
acknowledgements from all clients, TCP threads then signal the UDP thread to start
multicasting buffer over UDP. After multicasting finished, TCP threads notifies clients
multicast is done, and wait acknowledgements from clients again. If clients requests
retransmission, then it is the responsibility of TCP threads to resend packets over unicast.
If no retransmission needed, then clients should signal TCP threads that they are ready for
the next buffer to come.

5. Repeat step 4 if buffer size is not 0 in the last round, otherwise, TCP server shutdown
connection and exit.

Server cmdline usage example

./server <local_ip> <number_of_clients> [port] < kolla_image.tgz

<local_ip> is used here to specify the multicast egress interface. But which interface will be
used by TCP is leaved to route table to decide.
<number_of_clients> indicates the number of clients , thus the number of target hosts which
need to receive the image.
[port] is the port that will be used by both UDP and TCP. Default value can be used if user
does not provide it.

Client Design(Target Host side)

	Each target hosts has only one client process.

	Client connect to TCP server according to the cmdline parameters right after start up.

3. After connecting to TCP server, client first read from TCP server the multicast group
information which can be used to create the multicast receive socket then.

4. During each buffer receiving cycle, the client first read from TCP server the buffer info,
prepare the receive buffer, and acknowledge the TCP server that it is ready to receive. Then,
client receive buffer from the multicast socket until TCP server notifying the end of
multicast. By compare the buffer info and the received packets, the client knows whether to
send the retransmission request or not and whether to wait retransmission packet or not.
After all packets are received from UDP/TCP, the client eventually flush buffer to stdout
and tells the TCP server about ready to receive the next buffer.

5. Repeat step 4 if buffer size is not 0 in the last round, otherwise, client shutdowns
connection and exit.

Client cmdline usage example

./client <local_ip> <server_ip> [port] > kolla_image.tgz

<local_ip> is used here to specify the multicast ingress interface. But which interface
will be used by TCP is leaved to route table to decide.
<server_ip> indicates the TCP server IP to be connected to.
[port] is the port that will be used by both connect to TCP server and receive multicast
data.

Collaboration diagram among UDP Server, TCP Server(illustrate only one TCP thread)
and Clients:

	UDP Server TCP Server Client

	
| |

init mcast group
init mcast send socket

	———————————->

	
	accept clients

	<————————connet——————
——————–send mcast group info——->

	<———————————-

	state = PREP

do {
read data from stdin
prepare one buffer

	———————————–>

	
	state = SYNC

	
——————-send buffer info————–>

<———————-send ClIENT_READY———–

	<———————————-

	state = SEND

==send buffer over UDP multicast======>
———————————–>

———————–send SERVER_SENT———–>
[<——————-send CLIENT_REQUEST———-]
[————–send buffer over TCP unicast——>]

flush buffer to stdout

<——————-send CLIENT_DONE—————

	<———————————-

	state = PREP

while (buffer.len != 0)

os-nosdn-nofeature-ha overview and description

	1. Introduction
	1.1. Scenario components and composition

	1.2. Scenario usage overview

	1.3. Limitations, Issues and Workarounds

	1.4. References

 This document provides scenario level details for Fraser 1.0 of
deployment with no SDN controller and no extra features enabled by using
Daisy installer.

1. Introduction

This scenario is used primarily to validate and deploy a Pike OpenStack
deployment without any NFV features or SDN controller enabled.

1.1. Scenario components and composition

This scenario is composed of common OpenStack services enabled by default,
including Nova, Neutron, Glance, Cinder, Keystone, Horizon. Ceph is used as
the backend storage to Cinder, Glance and Nova on all deployed nodes.

All services are in HA, meaning that there are multiple cloned instances of
each service, and they are balanced by HA Proxy using a Virtual IP Address
per service. VIP is elected by using keepalived.

1.2. Scenario usage overview

Simply deploy this scenario by using the ‘-s os-nosdn-nofeature-ha’
parameter among others when calling ./ci/deploy/deploy.sh.

1.3. Limitations, Issues and Workarounds

None

1.4. References

For more information on the OPNFV Fraser release, please visit
http://www.opnfv.org/fraser

User Space Accelerated OVS scenario: os-nosdn-ovs_dpdk-noha Overview and Description

	1. Introduction

	2. Scenario components and composition

	3. Scenario Configuration

	4. References

 This document provides scenario level details for Fraser 1.0 of
deployment with no SDN controller and DPDK enabled Open vSwitch by using
Daisy installer.

1. Introduction

NFV and virtualized high performance applications, such as video processing,
require Open vSwitch to be accelerated with a fast data plane solution that
provides both carrier grade forwarding performance, scalability and open
extensibility.

A key component of any NFV solution is the virtual forwarder, which should
consist of soft switch that includes an accelerated data plane component. For
this, any virtual switch should make use of hardware accelerators and optimized
cache operation to be run in user space.

2. Scenario components and composition

This scenario enables high performance data plan acceleration by utilizing
DPDK enabled Open vSwitch (OVS). This allows packet switching to be isolated
to particular hardware resources (CPUs, huge page memory allocation) without
kernel interrupt or context switching on the data plane CPU.

Both tenant tunnel and external physnet1 leverage Open vSwitch accelerated
with a fast user space data path, while other network planes are performed
via non-accelerated OVS.

3. Scenario Configuration

Due to the performance optimization done by this scenario, it is recommended to
set some performance settings in the deploy settings in order to ensure maximum
performance. This is not necessary unless doing a baremetal deployment. Note,
this scenario requires taking the NIC mapped to the tenant and external network
on the compute node and binding them to DPDK. This means it will no longer be
accessible via the kernel. Ensure the NIC supports DPDK.

40 huge pages of 1G size are allocaled on each compute and network node for DPDK
and VMs by default and currently this can not be re-configured by using
configure files.

For each compute and network node, One CPU core of each NUMA is dedicatedly
allocated for DPDK by default and currently this can not be re-configured by using
configure files.

Deploy this scenario by using the ‘-s os-nosdn-ovs_dpdk-noha’ parameter among
others when calling ./ci/deploy/deploy.sh.

4. References

For more information on the OPNFV Fraser release, please visit
http://www.opnfv.org/fraser

os-odl-nofeature-ha overview and description

	1. Introduction
	1.1. Scenario components and composition

	1.2. Scenario usage overview

	1.3. References

 This document provides scenario level details for Fraser 1.0 of
deployment with the OpenDaylight SDN controller and no extra features enabled.

1. Introduction

This scenario is used primarily to validate and deploy a Pike OpenStack
deployment with OpenDaylight, and without any NFV features enabled.

1.1. Scenario components and composition

This scenario is composed of common OpenStack services enabled by default,
including Nova, Neutron, Glance, Cinder, Keystone, Horizon. Ceph is used as
the backend storage to Cinder, Glance and Nova on all deployed nodes.

All services are in HA, meaning that there are multiple cloned instances of
each service, and they are balanced by HA Proxy using a Virtual IP Address
per service. VIP is elected by using keepalived.

OpenDaylight is also enabled in HA, and forms a cluster. Neutron
communicates with a Virtual IP Address for OpenDaylight which is load
balanced across the OpenDaylight cluster. Every Open vSwitch node is
connected to every OpenDaylight for High Availability, thus it is the
OpenDaylight controllers responsbility to elect a master.

1.2. Scenario usage overview

Simply deploy this scenario by using the ‘-s os-odl-nofeature-ha’
parameter among others when calling ./ci/deploy/deploy.sh.

1.3. References

For more information on the OPNFV Fraser release, please visit
http://www.opnfv.org/fraser

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Daisy4NFV

 		
 OPNFV Daisy4nfv Installation Guide

 		
 Abstract

 		
 Version history

 		
 Daisy4nfv configuration

 		
 Prerequisites

 		
 Setup Requirements

 		
 Bare Metal Node Requirements

 		
 Network Requirements

 		
 Execution Requirements (Bare Metal Only)

 		
 Installation Guide (Bare Metal Deployment)

 		
 Nodes Configuration (Bare Metal Deployment)

 		
 Network Configuration (Bare Metal Deployment)

 		
 Start Deployment (Bare Metal Deployment)

 		
 Installation Guide (Virtual Deployment)

 		
 Nodes Configuration (Virtual Deployment)

 		
 Network Configuration (Virtual Deployment)

 		
 Start Deployment (Virtual Deployment)

 		
 Deployment Error Recovery Guide

 		
 1. Recovery Level 0

 		
 2. Recovery Level 1

 		
 3. Recovery Level 2

 		
 4. Recovery Level 3

 		
 OpenStack Minor Version Update Guide

 		
 Build Your Own Kolla Image For Daisy

 		
 Deployment Test Guide

 		
 Release notes for Daisy4nfv

 		
 Abstract

 		
 Configuration Guide

 		
 OpenStack Configuration Guide

 		
 Before The First Deployment

 		
 After The First Deployment

 		
 Release notes for Daisy4nfv

 		
 Abstract

 		
 Introduction

 		
 Release Data

 		
 Known Limitations, Issues and Workarounds

 		
 Test Result

 		
 Design Docs for Daisy4nfv

 		
 CI Job Introduction

 		
 CI Base Architech

 		
 Project Gating And Daily Deployment Test

 		
 Production CI

 		
 Deployment Steps

 		
 Kolla Image Multicast Design

 		
 Protocol Design

 		
 How to sync between server threads

 		
 Client flow chart

 		
 UDP thread flow chart

 		
 TCP thread flow chart

 		
 TCP using poll and message queue

_static/comment-bright.png

_static/ajax-loader.gif

