

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Release notes for Daisy4nfv

	1. Abstract

1. Abstract

This document compiles the release notes for the D 2.0 release of
OPNFV when using Daisy4nfv as a deployment tool.

Detailed Design

Protocol Design

	All Protocol headers are 1 byte long or align to 4 bytes.

2. Packet size should not exceed above 1500(MTU) bytes including UDP/IP header and should
be align to 4 bytes. In future, MTU can be modified larger than 1500(Jumbo Frame) through
cmd line option to enlarge the data throughput.

/* Packet header definition (align to 4 bytes) */
struct packet_ctl {

uint32_t seq; // packet seq number start from 0, unique in server life cycle.
uint32_t crc; // checksum
uint32_t data_size; // payload length
uint8_t data[0];

};

/* Buffer info definition (align to 4 bytes) */
struct buffer_ctl {

uint32_t buffer_id; // buffer seq number start from 0, unique in server life cycle.
uint32_t buffer_size; // payload total length of a buffer
uint32_t packet_id_base; // seq number of the first packet in this buffer.
uint32_t pkt_count; // number of packet in this buffer, 0 means EOF.

};

	1-byte-long header definition

Signals such as the four below are 1 byte long, to simplify the receive process(since it
cannot be spitted).

#define CLIENT_READY 0x1
#define CLIENT_REQ 0x2
#define CLIENT_DONE 0x4
#define SERVER_SENT 0x8

Note: Please see the collaboration diagram for their meanings.

	Retransmission Request Header

/* Retransmition Request Header (align to 4 bytes) */
struct request_ctl {

uint32_t req_count; // How many seqs below.
uint32_t seqs[0]; // packet seqs.

};

	Buffer operations

void buffer_init(); // Init the buffer_ctl structure and all(say 1024) packet_ctl
structures. Allocate buffer memory.
long buffer_fill(int fd); // fill a buffer from fd, such as stdin
long buffer_flush(int fd); // flush a buffer to fd, say stdout
struct packet_ctl *packet_put(struct packet_ctl *new_pkt);// put a packet to a buffer
and return a free memory slot for the next packet.
struct packet_ctl *packet_get(uint32_t seq);// get a packet data in buffer by
indicating the packet seq.

How to sync between server threads

If children’s aaa() operation need to wait the parents’s init() to be done, then do it
literally like this:

UDP Server
TCP Server1 = spawn()—-> TCP Server1

	init()

	TCP Server2 = spawn()—–> TCP Server2

	V(sem)———————-> P(sem) // No child any more

	V(sem)———————> P(sem)
aaa() // No need to V(sem), for no child

aaa()

If parent’s send() operation need to wait the children’s ready() done, then do it
literally too, but is a reverse way:

	UDP Server TCP Server1 TCP Server2

	

// No child any more

ready() ready()
P(sem) <——————— V(sem)

P(sem) <—————— V(sem)
send()

Note that the aaa() and ready() operations above run in parallel. If this is not the
case due to race condition, the sequence above can be modified into this below:

	UDP Server TCP Server1 TCP Server2

	

	// No child any more

	ready()

P(sem) <——————— V(sem)
ready()

P(sem) <——————- V(sem)
send()

In order to implement such chained/zipper sync pattern, a pair of semaphores is
needed between the parent and the child. One is used by child to wait parent , the
other is used by parent to wait child. semaphore pair can be allocated by parent
and pass the pointer to the child over spawn() operation such as pthread_create().

/* semaphore pair definition */
struct semaphores {

sem_t wait_parent;
sem_t wait_child;

};

Then the semaphore pair can be recorded by threads by using the semlink struct below:
struct semlink {

	struct semaphores this; / used by parent to point to the struct semaphores

	which it created during spawn child. */

	struct semaphores parent; / used by child to point to the struct

	semaphores which it created by parent */

};

chained/zipper sync API:

void sl_wait_child(struct semlink *sl);
void sl_release_child(struct semlink *sl);
void sl_wait_parent(struct semlink *sl);
void sl_release_parent(struct semlink *sl);

API usage is like this.

Thread1(root parent) Thread2(child) Thread3(grandchild)
sl_wait_parent(noop op)
sl_release_child

	+———->sl_wait_parent

	

	sl_release_child

	
	+———–> sl_wait_parent

	
sl_release_child(noop op)
…
sl_wait_child(noop op)

	sl_release_parent

sl_wait_child <————-

	sl_release_parent

sl_wait_child <————
sl_release_parent(noop op)

API implementation:

void sl_wait_child(struct semlink *sl)
{

	if (sl->this) {

	P(sl->this->wait_child);

}

}

void sl_release_child(struct semlink *sl)
{

	if (sl->this) {

	V(sl->this->wait_parent);

}

}

void sl_wait_parent(struct semlink *sl)
{

	if (sl->parent) {

	P(sl->parent->wait_parent);

}

}

void sl_release_parent(struct semlink *sl)
{

	if (sl->parent) {

	V(sl->parent->wait_child);

}

}

Client flow chart

See Collaboration Diagram

UDP thread flow chart

See Collaboration Diagram

TCP thread flow chart

	S_INIT — (UDP initialized) —> S_ACCEPT — (accept clients) –+

	

/—————————————————————-/
V

	S_PREP — (UDP prepared abuffer)

	^ |
| –> S_SYNC — (clients ClIENT_READY)
| |
| –> S_SEND — (clients CLIENT_DONE)
| |
| V
—————(bufferctl.pkt_count != 0)———————–+

V

exit() <— (bufferctl.pkt_count == 0)

TCP using poll and message queue

TCP uses poll() to sync with client’s events as well as output event from itself, so
that we can use non-block socket operations to reduce the latency. POLLIN means there
are message from client and POLLOUT means we are ready to send message/retransmission
packets to client.

poll main loop pseudo code:
void check_clients(struct server_status_data *sdata)
{

poll_events = poll(&(sdata->ds[1]), sdata->ccount - 1, timeout);

/* check all connected clients */
for (sdata->cindex = 1; sdata->cindex < sdata->ccount; sdata->cindex++) {

ds = &(sdata->ds[sdata->cindex]);
if (!ds->revents) {

continue;

}

	if (ds->revents & (POLLERR|POLLHUP|POLLNVAL)) {

	handle_error_event(sdata);

	} else if (ds->revents & (POLLIN|POLLPRI)) {

	
	handle_pullin_event(sdata); // may set POLLOUT into ds->events

	// to trigger handle_pullout_event().

	} else if (ds->revents & POLLOUT) {

	handle_pullout_event(sdata);

}

}

}

For TCP, since the message from client may not complete and send data may be also
interrupted due to non-block fashion, there should be one send message queue and a
receive message queue on the server side for each client (client do not use non-block
operations).

TCP message queue definition:

	struct tcpq {

	struct qmsg head, *tail;
long count; / message count in a queue /
long size; / Total data size of a queue */

};

TCP message queue item definition:

	struct qmsg {

	struct qmsg *next;
void *data;
long size;

};

TCP message queue API:

// Allocate and init a queue.
struct tcpq * tcpq_queue_init(void);

// Free a queue.
void tcpq_queue_free(struct tcpq *q);

// Return queue length.
long tcpq_queue_dsize(struct tcpq *q);

// queue new message to tail.
void tcpq_queue_tail(struct tcpq *q, void *data, long size);

// queue message that cannot be sent currently back to queue head.
void tcpq_queue_head(struct tcpq *q, void *data, long size);

// get one piece from queue head.
void * tcpq_dequeue_head(struct tcpq *q, long *size);

// Serialize all pieces of a queue, and move it out of queue, to ease the further
//operation on it.
void * tcpq_dqueue_flat(struct tcpq *q, long *size);

// Serialize all pieces of a queue, do not move it out of queue, to ease the further
//operation on it.
void * tcpq_queue_flat_peek(struct tcpq *q, long *size);

Requirement

1. When deploying a large OPNFV/OpenStack cluster, we would like to take the advantage of UDP
multicast to prevent the network bottleneck when distributing Kolla container from one
Installer Server to all target hosts by using unicast.

2. When it comes to auto scaling (extension) of compute nodes, use unicast is acceptable, since
the number of nodes in this condition is usually small.

The basic step to introduce multicast to deployment is:
a. Still setup the monopolistic docker registry server on Daisy server as a failsafe.
b. Daisy server, as the multicast server, prepares the image file to be transmitted, and count
how many target hosts(as the multicast clients)that should receive the image file
simultaneously.
c. Multicast clients tell the multicast server about ready to receive the image.
d. Multicast server transmits image over UDP multicast channel.
e. Multicast clients report success after received the whole image.
f. Setup docker registry server on each target hosts based upon received docker image.
g. Setup Kolla ansible to use 127.0.0.1 as the registry server IP so that the real docker
container retrieving network activities only take place inside target hosts.

Design

Methods to achieve

TIPC

TIPC or its wrapper such as ZeroMQ is good at multicast, but it is not suitable as an
installer:
1. The default TIPC kernel module equipped by CentOS7(kernel verison 3.10) is NOT stable
especially in L3 multicast(although we can use L2 multicast, but the network will be limited to
L2). If errors happen, it is hard for us to recover a node from kernel panic.

2. TIPC’s design is based on a stable node cluster environment, esp in Lossless Ethernet. But
the real environment is generally not in that case. When multicast is broken, Installer should
switch to unicast, but TIPC currently do not have such capability.

Top level design

1. There are two kinds of thread on the server side, one is UDP multicast thread the other is
TCP sync/retransmit thread. There will be more than one TCP threads since one TCP thread can
only serve a limited client (say 64~128) in order to limit the CPU load and unicast retransmit
network usage.

	There is only one thread on client side.

3. All the packets that a client lost during UDP multicast will be request by client to the TCP
thread and resend by using TCP unicast, if unicast still cannot deliver the packets successfully,
the client will failback to using the monopolistic docker registry server on Daisy server as a
failsafe option.

	Each packet needs checksum.

UDP Server Design (runs on Daisy Server)

1. Multicast group IP and Port should be configurable, as well as the interface that will be
used as the egress of the multicast packets. The user will pass the interface’s IP as the
handle to find the egress.

	Image data to be sent is passed to server through stdin.

3. Consider the size of image is large (xGB), the server cannot pre-allocate whole buffer to
hold all image at once. Besides, since the data is from stdin and the actual length is
unpredictable. So the server should split the data into small size buffers and send to the
clients one by one. Furthermore, buffer shall be divided into packets which size is MTU
including the UDP/IP header. Then the buffer size can be , for example 1024 * MTU including the
UDP/IP header.

4. After sending one buffer to client the server should stop and get feedback from client to
see if all clients have got all packets in that buffer. If any clients lost any buffer, client
should request the server to resend packets from a more stable way(TCP).

5. when got the EOF from stdin, server should send a buffer which size is 0 as an EOF signal to
the client to let it know about the end of sending.

TCP Server Design (runs on Daisy Server)

1. All TCP server threads and the only one UDP thread share one process. The UDP thread is the
parent thread, and the first TCP thread is the child, while the second TCP thread is the
grandchild, and so on. Thus, for each TCP thread, there is only one parent and at most one
child.

2. TCP thread accepts the connect request from client. The number of client is predefined by
server cmdline parameter. Each TCP thread connect with at most ,say 64 clients, if there are
more clients to be connected to, then a child TCP thread is spawned by the parent.

3. Before UDP thread sending any buffer to client, all TCP threads should send UDP multicast
IP/Port information to their clients beforehand.

4. During each buffer sending cycle, TCP threads send a special protocol message to tell
clients about the size/id of the buffer and id of each packet in it. After getting
acknowledgements from all clients, TCP threads then signal the UDP thread to start
multicasting buffer over UDP. After multicasting finished, TCP threads notifies clients
multicast is done, and wait acknowledgements from clients again. If clients requests
retransmission, then it is the responsibility of TCP threads to resend packets over unicast.
If no retransmission needed, then clients should signal TCP threads that they are ready for
the next buffer to come.

5. Repeat step 4 if buffer size is not 0 in the last round, otherwise, TCP server shutdown
connection and exit.

Server cmdline usage example

./server <local_ip> <number_of_clients> [port] < kolla_image.tgz

<local_ip> is used here to specify the multicast egress interface. But which interface will be
used by TCP is leaved to route table to decide.
<number_of_clients> indicates the number of clients , thus the number of target hosts which
need to receive the image.
[port] is the port that will be used by both UDP and TCP. Default value can be used if user
does not provide it.

Client Design(Target Host side)

	Each target hosts has only one client process.

	Client connect to TCP server according to the cmdline parameters right after start up.

3. After connecting to TCP server, client first read from TCP server the multicast group
information which can be used to create the multicast receive socket then.

4. During each buffer receiving cycle, the client first read from TCP server the buffer info,
prepare the receive buffer, and acknowledge the TCP server that it is ready to receive. Then,
client receive buffer from the multicast socket until TCP server notifying the end of
multicast. By compare the buffer info and the received packets, the client knows whether to
send the retransmission request or not and whether to wait retransmission packet or not.
After all packets are received from UDP/TCP, the client eventually flush buffer to stdout
and tells the TCP server about ready to receive the next buffer.

5. Repeat step 4 if buffer size is not 0 in the last round, otherwise, client shutdowns
connection and exit.

Client cmdline usage example

./client <local_ip> <server_ip> [port] > kolla_image.tgz

<local_ip> is used here to specify the multicast ingress interface. But which interface
will be used by TCP is leaved to route table to decide.
<server_ip> indicates the TCP server IP to be connected to.
[port] is the port that will be used by both connect to TCP server and receive multicast
data.

Collaboration diagram among UDP Server, TCP Server(illustrate only one TCP thread)
and Clients:

	UDP Server TCP Server Client

	
| |

init mcast group
init mcast send socket

	———————————->

	
	accept clients

	<————————connet——————
——————–send mcast group info——->

	<———————————-

	state = PREP

do {
read data from stdin
prepare one buffer

	———————————–>

	
	state = SYNC

	
——————-send buffer info————–>

<———————-send ClIENT_READY———–

	<———————————-

	state = SEND

==send buffer over UDP multicast======>
———————————–>

———————–send SERVER_SENT———–>
[<——————-send CLIENT_REQUEST———-]
[————–send buffer over TCP unicast——>]

flush buffer to stdout

<——————-send CLIENT_DONE—————

	<———————————-

	state = PREP

while (buffer.len != 0)

Installation Guide (Bare Metal Deployment)

TODO

OPNFV(Danube) Daisy4nfv Installation Guide

	Abstract

	Version history

	Daisy4nfv configuration
	Prerequisites
	Retrieve the installation bin image

	Retrieve the deployment scripts

	Setup Requirements
	Jumphost Requirements

	Bare Metal Node Requirements

	Network Requirements

	Execution Requirements (Bare Metal Only)

	Installation Guide (Bare Metal Deployment)

	Installation Guide (Virtual Deployment)
	Nodes Configuration (Virtual Deployment)

	Network Configuration (Virtual Deployment)

	Start Deployment (Virtual Deployment)

Daisy4nfv configuration

This document provides guidelines on how to install and configure the Danube
release of OPNFV when using Daisy as a deployment tool including required
software and hardware configurations.

Installation and configuration of host OS, OpenStack etc. can be supported by
Daisy on Virtual nodes and Bare Metal nodes.

The audience of this document is assumed to have good knowledge in
networking and Unix/Linux administration.

Prerequisites

Before starting the installation of the Danube release of OPNFV, some plannings
must be done.

Retrieve the installation bin image

First of all, the installation bin which includes packages of Daisy, OS,
OpenStack, and so on is needed for deploying your OPNFV environment.

The stable release bin image can be retrieved via OPNFV software download page [https://www.opnfv.org/software]

The daily build bin image can be retrieved via OPNFV artifact repository:

http://artifacts.opnfv.org/daisy.html

NOTE: Search the keyword “daisy/Danube” to locate the bin image.

E.g.
daisy/opnfv-gerrit-27155.bin

The git url and sha1 of bin image are recorded in properties files.
According to these, the corresponding deployment scripts can be retrieved.

Retrieve the deployment scripts

To retrieve the repository of Daisy on Jumphost use the following command:

	git clone https://gerrit.opnfv.org/gerrit/daisy

To get stable Danube release, you can use the following command:

	git checkout danube.1.0

Setup Requirements

If you have only 1 Bare Metal server, Virtual deployment is recommended. if you have more
than 3 servers, the Bare Metal deployment is recommended. The minimum number of
servers for each role in Bare metal deployment is listed below.

	Role

	Number of Servers

	Jump Host

	1

	Controller

	1

	Compute

	1

Jumphost Requirements

The Jumphost requirements are outlined below:

	CentOS 7.2 (Pre-installed).

	Root access.

	Libvirt virtualization support(For virtual deployment).

	Minimum 1 NIC(or 2 NICs for virtual deployment).

	PXE installation Network (Receiving PXE request from nodes and providing OS provisioning)

	IPMI Network (Nodes power control and set boot PXE first via IPMI interface)

	Internet access (For getting latest OS updates)

	External Interface(For virtual deployment, exclusively used by instance traffic to access the rest of the Internet)

	16 GB of RAM for a Bare Metal deployment, 64 GB of RAM for a Virtual deployment.

	CPU cores: 32, Memory: 64 GB, Hard Disk: 500 GB, (Virtual deployment needs 1 TB Hard Disk)

Bare Metal Node Requirements

Bare Metal nodes require:

	IPMI enabled on OOB interface for power control.

	BIOS boot priority should be PXE first then local hard disk.

	Minimum 1 NIC for Compute nodes, 2 NICs for Controller nodes.

	PXE installation Network (Broadcasting PXE request)

	IPMI Network (Receiving IPMI command from Jumphost)

	Internet access (For getting latest OS updates)

	External Interface(For virtual deployment, exclusively used by instance traffic to access the rest of the Internet)

Network Requirements

Network requirements include:

	No DHCP or TFTP server running on networks used by OPNFV.

	2-7 separate networks with connectivity between Jumphost and nodes.

	PXE installation Network

	IPMI Network

	Internet access Network

	OpenStack Public API Network

	OpenStack Private API Network

	OpenStack External Network

	OpenStack Tenant Network(currently, VxLAN only)

	Lights out OOB network access from Jumphost with IPMI node enabled (Bare Metal deployment only).

	Internet access Network has Internet access, meaning a gateway and DNS availability.

	OpenStack External Network has Internet access too if you want instances to access the Internet.

Note: All networks except OpenStack External Network can share one NIC(Default configuration) or use an exclusive
NIC(Reconfigurated in network.yml).

Execution Requirements (Bare Metal Only)

In order to execute a deployment, one must gather the following information:

	IPMI IP addresses of the nodes.

	IPMI login information for the nodes (user/password).

Abstract

This document describes how to install the Danube release of OPNFV when using
Daisy4nfv as a deployment tool covering it’s limitations, dependencies and
required resources.

Version history

	Date

	Ver.

	Author

	Comment

	2017-02-07

	0.0.1

	Zhijiang Hu
(ZTE)

	Initial version

Installation Guide (Virtual Deployment)

Nodes Configuration (Virtual Deployment)

The below file is the inventory template of deployment nodes:

“./deploy/conf/vm_environment/zte-virtual1/deploy.yml”

You can write your own name/roles reference into it.

	name – Host name for deployment node after installation.

	roles – Components deployed.

Set TYPE and FLAVOR

E.g.

TYPE: virtual
FLAVOR: cluster

Assignment of different roles to servers

E.g. OpenStack only deployment roles setting

hosts:
 - name: host1
 roles:
 - controller
 - ha

 - name: host2
 roles:
 - compute

NOTE:
IF YOU SELECT MUTIPLE NODES AS CONTROLLER, THE ‘ha’ role MUST BE SELECTED, TOO.

E.g. OpenStack and ceph deployment roles setting

hosts:
 - name: host1
 roles:
 - controller
 - ha
 - ceph-adm
 - ceph-mon

 - name: host2
 roles:
 - compute

Network Configuration (Virtual Deployment)

Before deployment, there are some network configurations to be checked based
on your network topology. The default network configuration file for Daisy is
“daisy/deploy/config/vm_environment/zte-virtual1/network.yml”.
You can write your own reference into it.

The following figure shows the default network configuration.

 +--+
 | |
 +------------+ | |
 | Jumphost +------+ |
 +------------+ | |
 | |
 | |
 | |
 +------------+ | |
 +--------+ Controller +------+ |
+------------+	
+------------+	
	Compute1 +------+
+------------+	
+------------+	
	Compute2 +------+
+------------+	
++-+	
^	
++--------------------------+	
External Network	
+---------------------------+ |
 +-----------------------+---+
 | Installation Network |
 | Public/Private API |
 | Internet Access |
 | Tenant Network |
 +---------------------------+

Start Deployment (Virtual Deployment)

TODO

Release notes for Daisy4nfv

	1. Abstract

1. Abstract

This document compiles the release notes for the D 2.0 release of
OPNFV when using Daisy4nfv as a deployment tool.

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/ajax-loader.gif

